To "p" $pH = - log [H_3O^+]$ $pOH = - log [OH^-]$ $pK_a = - log K_a$ $pK_b = - log K_b$ $pK_w = - log K_w$	PH is pHun and other bad puns pH + pOH = 14 pK _a + pK _b = 14	Calculations: weak acids $ \frac{K_a = [H_3O^+][A-] / [HA]}{K_a = [H_3O^+]^2 / [HA]} $
To "un-p"	$[H_3O^+][OH^-] = 1 \times 10^{-14}$	Calculations: weak bases $K_b = [OH^-]^2 / [B]$
$[H_{3}O^{+}] = 10^{-pH}$ $[OH^{-}] = 10^{-pOH}$ $K_{a} = 10^{-pKa}$ $K_{b} = 10^{-pKb}$	$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} @ 25^{\circ}C$ $K_a \times K_b = 1 \times 10^{-14}$	Note: You are not normally given K _b ; Instead you will get given K _a or pK _a of the
$K_{w} = 10^{-pKw}$	$K_a \times K_b = K_w$	conjugate acid. Calculate the K _b value from this!!
Kw is the ionic product for water	Calculator Warning!!	Calculations: salt solutions that affect the pH of water
$2H_2O \Rightarrow H_3O^+ + OH^-$	Enter a number like 1.05 x 10 ⁻³ as 1 . 0 5 EXP (-) 3	ones that make the water acidic e.g. NH_4CI $K_a = [H_3O^+]^2 / [salt]$
Or more simply $H_2O \Rightarrow H^+ + OH^-$	Significant figures!!	ones that make the water alkaline e.g. CH₃COONa
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$	It will usually be 3 e.g. 0.0150, 2.04 x 10 ⁻⁸ , 4.50, 12.8 etc	CH_3COONa $K_b = [OH^-]^2 / [salt]$

Highlighted formula will be provided on the Resource Sheet