To "p" $\begin{gathered} \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\ \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\ \mathrm{pK}_{\mathrm{a}} \end{gathered}=-\log \mathrm{K}_{\mathrm{a}} .$	pH is pHun and other bad puns $\begin{aligned} & \mathrm{pH}+\mathrm{pOH}=14 \\ & \mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14 \end{aligned}$	Calculations: weak acids $\begin{gathered} \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}-] /[\mathrm{HA}] \\ \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[\mathrm{HA}] \end{gathered}$
To "un-p" $\begin{gathered} {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\ {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}} \\ \mathrm{~K}_{\mathrm{a}}=10^{-\mathrm{pKa}} \\ \mathrm{~K}_{\mathrm{b}}=10^{-\mathrm{pKb}} \\ \mathrm{~K}_{\mathrm{w}}=10^{-\mathrm{pKw}} \end{gathered}$	$\begin{gathered} {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}} \\ \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} @ 25^{\circ} \mathrm{C} \\ \mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{b}=1 \times 10^{-14} \\ \mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \end{gathered}$	Calculations: weak bases $\mathrm{K}_{\mathrm{b}}=\left[\mathrm{OH}^{-}\right]^{2} /[\mathrm{B}]$ Note: You are not normally given K_{b}; Instead you will get given K_{a} or $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ of the conjugate acid. Calculate the K_{b} value from this!!
$K w$ is the ionic product for water $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$ Or more simply..... $\begin{gathered} \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\ \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \end{gathered}$	Calculator Warning!! Enter a number like 1.05×10^{-3} as 1.05EXP (-) 3 Significant figures!! It will usually be 3 e.g. $0.0150,2.04 \times 10^{-8}$, 4.50, 12.8 etc	Calculations: salt solutions that affect the pH of water ones that make the water acidic e.g. $\mathrm{NH}_{4} \mathrm{Cl}$ $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[\text { salt }]$ ones that make the water alkaline e.g. $\begin{gathered} \mathrm{CH}_{3} \mathrm{COONa}^{-} \\ \mathrm{K}_{\mathrm{b}}=\left[\mathrm{OH}^{-}\right]^{2} /[\text { salt }] \end{gathered}$

